NASA announced the projects to enter the third phase of their 3D printed Mars habitat competition. Here you can see some amazing technological concepts. Hopefully I'll see some of them being used on Mars sometime in the future.
Dexter is an open source, 5+ axis robotic arm. It is built from 3D printed parts and held together with carbon fiber strakes for reinforcement. Dexter uses five NEMA-17 stepper motors with three harmonic drives in conjunction with optical encoders to get extreme precision, with a 2.5 micron stepping distance and 50 micron repeatablity.
Dexter is also trainable, meaning that you can manually control it and have playback of the exact path it took. This makes it easily programmable for applications.
Dexter can also be controlled with our software, Dexter Development Environment (DDE). DDE utilizes a modified version of JavaScript that allows for a more traditional approach to programming while still being friendly to those who are newer to code. It also contains a simulator that will show playback of Dexter's movements using a pane in the development environment.
Dexter even has a Unity library that one of the members of the Dexter community put together, complete with haptic feedback. This could potentially be used for video games or even real world applications where a Dexter must be remotely controlled