Jun 19, 2013

UConduit h-bot 3D printer

Yet another cool h-bot made from steel electric conduit.


From project web page:
What is the UConduit? 
The UConduit 3D printer is an h-bot 3D printer, with a frame built from electrical conduit (steel conduit that you can find at the hardware store). It was designed by SSD member Lee Miller and is open source hardware via the Creative Commons Share-Alike license. It is hosted on github at https://github.com/iquizzle/uconduit. All printed parts are designed using OpenSCAD (which is an open source CAD environment) so that parts can be freely compiled and modified.

Why electrical conduit?

There are many options for framing. Most higher-end 3D printers these days are using aluminum t-slotted extrusion or specialty laser cut parts. While I think these options are achieving excellent results, I wanted to build a printer that also had a solid frame, but went back to the hardware store mentality of the earlier Mendel and Prusa printers. Conduit is extremely inexpensive ($3.50/5ft) and plenty stiff for a printer. It created some extra challenges in design work, but has an additional payoff.

The printer is held together using o-rings and compression flanges. Each end has two rubber o-rings. There is a “hard clamp” and a “soft clamp”. The hard clamped o-ring creates a pivot point and firmly holds the conduit in place. By adding a second “soft clamped” o-ring on each end, vibrations are very effectively damped. As a result, the printer is not only fast, but also super quiet! As a physicist, I’ve used this type of connection to create vacuum-tight seals on tube furnaces, which is where I first got the idea. Additionally, wiring can be neatly routed from the top to the bottom of the printer (using the conduit for its intended purpose!).

What is an h-bot?

Think etch-a-sketch! I’ve never deconstructed an etch-a-sketch, but I’d guess that it probably works in a similar way. Two motors are connected to a single belt, which is wrapped in an H shape. If you turn one motor and hold the other fixed, the print head moves at 45-degrees. Combinations of the two motors turning the same way or in opposite directions gives movements in the x and y directions. An advantage to this geometry is that all of the motors in the UConduit remain fixed. Because motors are the heaviest objects in a printer, the inertial forces are significantly reduced by keeping them stationary. I worked with SSD member Free Beachler to modify the popular open source 3D printer firmware “marlin” in order to accommodate the h-bot geometry. I’m very pleased with the results so far, but 3D printing is very competitive in the maker world right now, so you be the judge!