Mar 30, 2015

Retro designed 3d printer in post-WW2 table saw frame

I LOVE the design of this 3d printer made by Chad Bridgewater! It is a true piece of art! This custom combines modern technology and vintage design as he developed his 3d printer based on a frame of old post-WWII Craftsman table saw.  He re-purposed this two machines for his MFA thesis and he will aslo present old press drill turned int CNC mill.

Here is his NOS 3d printer in old table saw:

Kudos Chad! You Sir are a master craftsman!

You can see more details and much more pictures at his blog here:

He also made a laser engraver in post-WW2 table saw:

Thanks for the tip Franklin Flood!

Mar 29, 2015

Aakar Brainboard v2 Indian open source control electronics

Aakar Brainboard v2 is a new modular open source electronic controller board from India .

Here is the summary from the Indiegogo campaign page:
Aakar means Shape in Hindi. Aakar Brainboard v2 is a modular CNC controller board based on LPC1768/69 Cortex-M3 chip. Due to its modular design it allows easier upgrades as per requirements and easy replacement if there is any broken part. It runs on open source Smoothie modular firmware and is targeted at 3D Printers, Laser cutters, CNC Mills, Pick and Place and other small or Mid-size CNC machines. Upgrade your machines for higher performance and features.

Here is more detailed presentation:

Aakar Brainboard v2 tech specs:

  • NXP LPC 1768 32-bits Cortex-M3 MCU, running at 100Mhz. 512kB Flash, 64kB RAM.
  • Drag and drop flashing : simply drop a new firmware file to the Aakar drive to update.
  • USB2 Composite device : shows to the computer as both a Serial device, and a Mass Storage device ( exposing the SD-card).
  • Ethernet.
Power outputs
  • Up to 3 through hole 10A, Mosfets sharing a power circuit.
  • Up to 2 Mosfets with options of regulated 12V output for Fans.
  • One Mosfet with separate power supply 20A, up to 36V.
  • One optically isolated DPDT relay ~240V,5A for driving AC loads like milling tools or vacuum pumps.
  • Regulated 5V and 12V headers.
  • Two standard servo connector powered from onboard 5V regulator.
  • 4 Thermistor (12-bit ADC ) inputs.
  • 6 Endstop inputs.
  • Play/Pause LED and Button
  • Connector for Serial Graphic LCD Panel with encoder and buzzer.
  • SD bootloader customized for Aakar Brainboard allows drag and drop firmware upgrades.
  • Runs the highly-modular Smoothieware firmware.
Stepper drivers
  • 3 to 5 Allegro A4983 or DRV8825 stepper driver modules.
  • Each capable of driving bipolar steppers up to 35V and 2A(DRV8825).
  • Microstepping control of individual stepper to give greater flexibility.
Power inputs
  • True single input power operation by configuring jumpers(by default jupers are configured in this state).
  • Main 12-24V (Stepper drivers ) power can be connected using a 5mm screw terminal or standard 2x2 ATX CPU power connector.
  • 5V input can be taken directly from the USB cable or supplied by a 5V switching regulator installed on the board.
  • Series fused input for heated bed MOSFET with seperate power input.
  • Regulated 12V and regulated 5V headers.
  • 1 SPI connector with selectable 3.3V or 5V vcc.
  • 1 SPI/UART connector with selectable 3.3V or 5V vcc
  • 1 I2C connector with selectable 3.3V or 5V pull-ups and vcc.
  • 1 I2C/UART connector with selectable 3.3V or 5V vcc.
  • 1 UART connector FTDI cable compatible pinout.
  • All GPIO pins broken out on headers.
  • 4 LEDs.
  • Stepper signal pins are broken out for connection external stepper drivcers.
  • Serial graphic LCD panel with rotary encoder or push button control panel, many connectivity options.
  • Dimensions are 110x150mm.
Aakar website:

3D printed robotic arm controlled by FRDM-KL25Z MCU

3D printed robotic arms seem to be very popular projects to develop. Here is a new one controlled by FRDM-KL25Z MCU and powered by stepper motors.

It was dsigned and made by user "madivak" for his undergraduate level course. Hopefully he releases the files to the public.

Video of the arm moving:

Project homepage:

To see more powerful 3d printed robotic arm look at:

Alligator is new powerful open source control unit for your 3d printer or CNC

Alligator board is a new powerful electronic control unit for your 3d printer or similar CNC device. You can get it for 120 euro on their Indiegogo fundraiser.

Learn more about Alligator board or get your own unit at:

Best of all: Alligator is open source hardware!

Alligator Board Repetier Firmware on Github

Overview of Alligator versus other boards:

Autodesk Ember SLA 3d printer review and maintenance by Adafuit

Ruiz brothers from Adafruit did a very useful review and operations manual for Autodesk Ember SLA 3d printer. They go trough many aspect of it including basic maintenance and Hall sensor troubleshooting.

Basic review of Ember:

More detailed guide, operations manual and usage tips:

Here is a very detailed guide on how to use Ember, basic maintenance and even how to repair the Hall sensor so you can align the printer:

Always wear gloves when working with resin

How to use inductive distance sensor and Mk3 aluminum hotbed for automatic bed leveling

3D Proto, creator of dual parking extruder, made an excellent video about how to install and use inductive distance sensor with Mk3 aluminum hot bed. This combination enables you to reach much better quality of ABS prints.

Inductive distance sensor on the extruder paired to Marlin firmware constantly corrects the distance to print surface

Diagram showing how to connect inductive distance sensor to control unit ie. Ramps

Combined with Mk3 Alu heated bed gives much better ABS prints like in this example where you can see very strait walls

Here is the video guide:


Mar 25, 2015

How to copyright your 3d printed work

Copyright is one of the most important issues of our age. Do you know how to use it to protect your 3d printing work? What can be copyrighted? What can you licence on a 3d object?

Here is an excellent White Paper guide written by Michael Weinberg on how to licence elements of your 3d printed / 3d printable object. It is a must read for anyone dealing with 3d printing and design!

Here is an short overview from the document:
A Three-Step Process In order to understand what it is you are licensing, this paper proposes a three-step process:
Figure out which elements of your object or object file are eligible for copyright protection
This can be much harder in the world of physical objects than it is with exclusively digital works. Unlike with code or photographs, with physical objects you may actually have to search out what parts are and are not protected by copyright. You may also need to make a distinction between the object and the file that represents the object—something that rarely occurs in the more traditional copyright world. While this can be complicated, this paper will try to make it as intuitive and straightforward as possible.

Understand what copyright does—and does not—allow you to control

Although it sometimes can feel otherwise, a copyright that protects a work does not control every use of that work.1 Understanding what your copyright allows you to control— and what remains out of your control—is critical to thinking about how to license things. For example, you may have a copyright on a file that represents an object, but not on the object itself. In that case, you should be clear-eyed about the fact that even the most restrictive license on the file will not stop people from reproducing the object without your permission.

Choose your license

After you understand what parts of your work are protected by copyright, and what that copyright protections actually mean, it is time to think about licensing. Once you understand what you have the legal right to control, you can start deciding how you want to exercise that control. This Paper is Only About Copyright Your 3D object might be protected by more than copyright. It could be protected by patent, or by trademark.

So why is this paper only about copyright?

Mostly because copyright protection is free. If you create something that is eligible for copyright protection, it automatically gets copyright protection free of charge. There are good reasons to register your copyright, but registration is not required for protection. This means that you get a copyright without ever filling out paperwork, consulting a lawyer, or even wanting it in the first place

Here you can download the entire guide in PDF format:

This White Paper was published by Public Knowledge on March 06, 2015: Public Knowledge is a non-profit Washington, D.C.-based public interest group that is involved in intellectual property law, competition, and choice in the digital marketplace, and an open standards/end-to-end internet.

Only issue that needs further clarification is how 3d printing copyright works in international environment. You create a 3d object in one country, publish it on a repository in second county, someone in third country downloads it and does something against your licence...


Mar 22, 2015

Photo log of 3d printing fully functional mechanical keyboard

Redditor wildpanic posted his build log on /r/3dprinting about his making of fully functional 3d printed mechanical keyboard.
It is printed from two parts due to print surface limitations but the end result looks great!

Here is the full photo build log:

Full Reddit thread about this keyboard is here:

If you are more interested in chorded keyboard that is more compact and will earn you some serious geek points take a look at:

How to upgrade early Printrbot Simple from fishing line to belt drive

If you own an early version of wooden Printrbot Simple from 2013 / 2014 that is powered by Kevlar fishing line you may want to upgrade it to belt drive.
Jason Bowling made a very detailed guide on the entire process that will upgrade you small Printrbot. Kudos Jason!

Detailed guide with pictures: